Intent Audience Fields

Intent Audience Fields

Complete reference for every field returned in Intent Audience parquet exports. Each audience export contains up to 125 fields across intent scoring, contact, company, and demographic categories.


How Intent Audiences Work

  1. Create an audience via the Intent Audiences API with topic filters
  2. Poll until the audience task completes
  3. Download the resulting parquet files
  4. Each row represents one person matched to one intent topic

A person appears in multiple rows if they match multiple topics in the audience.


Intent Fields

These fields define the intent match and are always present (100% populated) on every row.

FieldTypeDescriptionExample
hemstringHEM (SHA256 hash of lowercase email)a1b2c3d4... (64-char hex)
topic_idstringTaxonomy topic identifier4eyes_109472
topic_namestringHuman-readable topic name360Learning
categorystringTopic categoryBusiness
subcategorystringTopic subcategoryBrands
scorestringIntent score levelhigh, medium
perc_scoreintegerPercentile score (51-98)75, 88, 98
segment_typestringSegment classificationB2B
tstimestampIntent signal date2026-01-27 00:00:00
topic_id_prefixstringTopic ID prefix for grouping4eyes_109

Score Details

  • score: Categorical label -- high or medium
  • perc_score: Numeric percentile rank (higher = stronger intent signal). Range: 51-98.
  • ts: Date-level timestamp. The time portion is always midnight.

Identity Fields

Email and identity resolution data. Present on every row.

FieldTypeDescription
emailstringPrimary resolved email address
domain_lcstringEmail domain (e.g., acmecorp.com)
is_email_businessstring"true" or "false"
is_email_personalstring"true" or "false"
is_internationalstring"true" if non-US

Email Hashes

Multiple hash algorithms and case variants for matching against your own data:

FieldAlgorithmInput
md5_lc_hemMD5Lowercase email
md5_uc_hemMD5Original-case email
sha1_lc_hemSHA1Lowercase email
sha1_uc_hemSHA1Original-case email
sha256_lc_hemSHA256Lowercase email
sha256_uc_hemSHA256Original-case email

Additional Elixir-sourced hashes are available with the emails_ prefix: emails_md5_lc_hem, emails_sha1_lc_hem, emails_sha256_lc_hem, and their _uc_ variants.


Person Fields

Contact-level data from the identity graph.

Name

FieldTypeDescriptionExample
first_namestringFirst namejane
middle_namestringMiddle namemarie
last_namestringLast namesmith

Email

FieldTypeDescription
emailstringPrimary resolved email
emailsstringAll known emails (comma-separated)
personal_emailstringPrimary personal email
personal_emailsstringAll personal emails (comma-separated)
current_business_emailstringCurrent work email
business_emailsstringAll business emails
primary_contact_emailsstringPrimary contact emails
valid_emailsstringValidated emails
invalid_emailsstringKnown-invalid emails

Email Validation

FieldTypeValues
email_validation_statusstringcatchall, invalid, unknown, valid
personal_email_validation_statusstringunknown, valid
current_business_email_validation_statusstringcatchall, unknown, valid
email_last_seendateLast date email was verified active
current_business_email_validation_datedateBusiness email validation date

Phone Numbers

All phone fields use E.164 format (e.g., +15551234567). Multiple numbers are comma-separated. Each phone field has a matching DNC (Do Not Call) field with positionally-aligned y/n values.

FieldDescriptionDNC Field
phonesAll phone numbersphones_dnc
direct_numbersDirect/work numbersdirect_numbers_dnc
mobile_phonesMobile numbersmobile_phones_dnc
personal_phonesPersonal numberspersonal_phones_dnc

DNC alignment example:

phones: "+15551234567, +15559876543"
phones_dnc: "n, y"

The first number is not on the DNC list; the second is.

FieldDescription
mobile_phones_validation_statusComma-separated, positionally aligned with mobile_phones: unknown, valid
mobile_phones_validation_dateValidation date

Professional Profile

FieldTypeDescriptionExample
job_titlestringCurrent job titleproduct analyst
job_title_normalizedstringStandardized job titleproduct analyst
job_title_historystringPrevious titlesassociate analyst
headlinestringLinkedIn headlineProduct Analyst at Acme Corp
seniority_levelstringNormalized senioritystaff, manager, director, vp, cxo
seniority_level_2stringSecondary seniorityMore granular classification
seniority_level_rawstringRaw from sourceentry, senior, c_suite
departmentstringPrimary departmentengineering, sales
department_2stringSecondary departmentMore granular classification
subdepartmentsstringSub-department
job_functionsstringFunction categories
inferred_years_experiencestringEstimated experience
education_historyJSON stringEducation recordsSee example below

education_history Example

{
  "name": "Stanford University",
  "url": "https://www.linkedin.com/school/stanford-university",
  "extraction_order": 0,
  "extraction_date": "2025-05-04T16:41:23Z"
}

Social Profiles

FieldTypeDescription
linkedin_urlstringLinkedIn profile URL
twitter_urlstringTwitter/X profile URL
github_urlstringGitHub profile URL
facebook_urlstringFacebook profile URL
photo_urlstringProfile photo URL
social_connectionsstringConnection range: 1-9, 10-99, 100-249, 250-499, 500+

Personal Address

FieldTypeExample
personal_addressstring123 Main St
personal_address_2stringApt 4B
personal_citystringnew york
personal_statestringnew york
personal_state_codestringny
personal_zipstring10001
personal_zip4string1234
personal_countrystringunited states
personal_country_alpha2stringus
personal_country_alpha3stringusa
personal_country_numericnumber840
personal_timezoneintegerUTC offset
address_idstringEncoded address identifier
dpv_codestringUSPS Delivery Point Validation: d, n, s, y

Demographics

FieldTypeValues
genderstringf, m, u
inferred_genderstringf, m (algorithmically inferred)
inferred_gender_unisexstringy if name is unisex, n otherwise
age_rangestring18-24, 25-34, 35-44, 45-54, 55-64, 65 and older
has_childrenstringy or n
is_marriedstringy or n
is_homeownerstringy or n
income_range_lcstringless than $20,000 through $250,000+ (9 ranges, all lowercase)
net_worthstring-$20,000 to -$2,500 through $1,000,000 or more (13 ranges)
is_profile_b2bstringy or n
is_profile_b2cstringy or n

Company Fields

Firmographic data from the identity graph.

FieldTypeDescriptionExample
company_namestringCompany nameacme corp
company_name_historystringPrevious names
company_domainstringWebsite domainacmecorp.com
company_related_domainsstringAssociated domains (comma-separated)acme.co, acme.io
company_descriptionstringCompany description
company_industrystringPrimary industrycomputer software
company_naicsstringNAICS code5112
company_sicstringSIC code7372
company_employee_countstringExact employee count250
company_employee_count_rangestringEmployee bracket251 to 500
company_total_revenuenumberAnnual revenue15000000
company_revenue_rangestringRevenue bracket10 million to 25 million
company_addressstringStreet address100 main st
company_address2stringAddress line 2
company_citystringCitysan francisco
company_statestringStatecalifornia
company_zip_codestringZIP code94105
company_countrystringCountryunited states
company_phonesstringPhone numbers+14155551234
company_phones_dncstringDNC statusn
company_linkedin_urlstringLinkedIn URLlinkedin.com/company/acme
company_idstringInternal company identifier
company_id_rightstringMatched company ID from enrichment join

Reading Parquet Files

See our Reading Parquet Files guide for language-specific examples.

Quick Start with DuckDB

-- Read all parts of an audience export
SELECT * FROM read_parquet('audience_part-*.parquet');

-- Filter to high-intent contacts
SELECT first_name, last_name, email, company_name, job_title, score, perc_score
FROM read_parquet('audience_part-*.parquet')
WHERE score = 'high'
ORDER BY perc_score DESC;

-- Unique contacts across all topics
SELECT DISTINCT ON (email) email, first_name, last_name, company_name
FROM read_parquet('audience_part-*.parquet');

Quick Start with Python

import pandas as pd

df = pd.read_parquet('audience_part-0000.parquet')

# High-intent contacts with company data
leads = df[(df['score'] == 'high') & (df['company_name'].notna())]
leads[['first_name', 'last_name', 'email', 'company_name', 'job_title', 'perc_score']]

All Fields (125 total)

Full field list
address_id, age_range, business_emails, category, company_address, company_address2,
company_city, company_country, company_description, company_domain, company_employee_count,
company_employee_count_range, company_id, company_id_right, company_industry,
company_linkedin_url, company_naics, company_name, company_name_history, company_phones,
company_phones_dnc, company_related_domains, company_revenue_range, company_sic,
company_state, company_total_revenue, company_zip_code, current_business_email,
current_business_email_validation_date, current_business_email_validation_status,
department, department_2, department_raw, direct_numbers, direct_numbers_dnc, domain_lc,
dpv_code, education_history, email, email_last_seen, email_validation_status, emails,
emails_md5_lc_hem, emails_md5_uc_hem, emails_sha1_lc_hem, emails_sha1_uc_hem,
emails_sha256_lc_hem, emails_sha256_uc_hem, facebook_url, first_name, first_uuid_norm,
flattened_uuids, gender, github_url, has_children, headline, hem, income_range_lc,
inferred_gender, inferred_gender_unisex, inferred_years_experience, invalid_emails,
is_email_business, is_email_personal, is_homeowner, is_international, is_married,
is_profile_b2b, is_profile_b2c, job_functions, job_title, job_title_history,
job_title_normalized, last_name, last_updated, linkedin_url, md5_lc_hem, md5_uc_hem,
middle_name, mobile_phones, mobile_phones_dnc, mobile_phones_validation_date,
mobile_phones_validation_status, net_worth, perc_score, personal_address,
personal_address_2, personal_city, personal_country, personal_country_alpha2,
personal_country_alpha3, personal_country_numeric, personal_email,
personal_email_validation_status, personal_emails, personal_phones, personal_phones_dnc,
personal_state, personal_state_code, personal_timezone, personal_zip, personal_zip4,
phones, phones_dnc, photo_url, primary_contact_emails, profile_pid_all, score,
segment_type, seniority_level, seniority_level_2, seniority_level_raw, sha1_lc_hem,
sha1_uc_hem, sha256_lc_hem, sha256_uc_hem, social_connections, subcategory,
subdepartments, topic_id, topic_id_prefix, topic_name, ts, twitter_url, valid_emails

Data Formatting Notes

  • Text fields are lowercase. Names, addresses, industries, and most string values are stored in lowercase. Apply your own casing for display.
  • Boolean-like values are strings. Fields like has_children, is_homeowner, and is_married return "y" / "n" (not true / false). is_email_business and is_email_personal return "true" / "false".
  • JSON fields are stringified. education_history is JSON encoded as a string. Parse it in your application.
  • Null fields appear as null. If a field has no value for a given row, it will be null in the parquet file. Handle missing values in your code.
  • Dates use ISO 8601. ts is a timestamp. Date-only fields use YYYY-MM-DD.

Related