Intent Audience Fields
Intent Audience Fields
Complete reference for every field returned in Intent Audience parquet exports. Each audience export contains up to 125 fields across intent scoring, contact, company, and demographic categories.
How Intent Audiences Work
- Create an audience via the Intent Audiences API with topic filters
- Poll until the audience task completes
- Download the resulting parquet files
- Each row represents one person matched to one intent topic
A person appears in multiple rows if they match multiple topics in the audience.
Intent Fields
These fields define the intent match and are always present (100% populated) on every row.
| Field | Type | Description | Example |
|---|---|---|---|
hem | string | HEM (SHA256 hash of lowercase email) | a1b2c3d4... (64-char hex) |
topic_id | string | Taxonomy topic identifier | 4eyes_109472 |
topic_name | string | Human-readable topic name | 360Learning |
category | string | Topic category | Business |
subcategory | string | Topic subcategory | Brands |
score | string | Intent score level | high, medium |
perc_score | integer | Percentile score (51-98) | 75, 88, 98 |
segment_type | string | Segment classification | B2B |
ts | timestamp | Intent signal date | 2026-01-27 00:00:00 |
topic_id_prefix | string | Topic ID prefix for grouping | 4eyes_109 |
Score Details
score: Categorical label --highormediumperc_score: Numeric percentile rank (higher = stronger intent signal). Range: 51-98.ts: Date-level timestamp. The time portion is always midnight.
Identity Fields
Email and identity resolution data. Present on every row.
| Field | Type | Description |
|---|---|---|
email | string | Primary resolved email address |
domain_lc | string | Email domain (e.g., acmecorp.com) |
is_email_business | string | "true" or "false" |
is_email_personal | string | "true" or "false" |
is_international | string | "true" if non-US |
Email Hashes
Multiple hash algorithms and case variants for matching against your own data:
| Field | Algorithm | Input |
|---|---|---|
md5_lc_hem | MD5 | Lowercase email |
md5_uc_hem | MD5 | Original-case email |
sha1_lc_hem | SHA1 | Lowercase email |
sha1_uc_hem | SHA1 | Original-case email |
sha256_lc_hem | SHA256 | Lowercase email |
sha256_uc_hem | SHA256 | Original-case email |
Additional Elixir-sourced hashes are available with the emails_ prefix: emails_md5_lc_hem, emails_sha1_lc_hem, emails_sha256_lc_hem, and their _uc_ variants.
Person Fields
Contact-level data from the identity graph.
Name
| Field | Type | Description | Example |
|---|---|---|---|
first_name | string | First name | jane |
middle_name | string | Middle name | marie |
last_name | string | Last name | smith |
Email
| Field | Type | Description |
|---|---|---|
email | string | Primary resolved email |
emails | string | All known emails (comma-separated) |
personal_email | string | Primary personal email |
personal_emails | string | All personal emails (comma-separated) |
current_business_email | string | Current work email |
business_emails | string | All business emails |
primary_contact_emails | string | Primary contact emails |
valid_emails | string | Validated emails |
invalid_emails | string | Known-invalid emails |
Email Validation
| Field | Type | Values |
|---|---|---|
email_validation_status | string | catchall, invalid, unknown, valid |
personal_email_validation_status | string | unknown, valid |
current_business_email_validation_status | string | catchall, unknown, valid |
email_last_seen | date | Last date email was verified active |
current_business_email_validation_date | date | Business email validation date |
Phone Numbers
All phone fields use E.164 format (e.g., +15551234567). Multiple numbers are comma-separated. Each phone field has a matching DNC (Do Not Call) field with positionally-aligned y/n values.
| Field | Description | DNC Field |
|---|---|---|
phones | All phone numbers | phones_dnc |
direct_numbers | Direct/work numbers | direct_numbers_dnc |
mobile_phones | Mobile numbers | mobile_phones_dnc |
personal_phones | Personal numbers | personal_phones_dnc |
DNC alignment example:
phones: "+15551234567, +15559876543"
phones_dnc: "n, y"
The first number is not on the DNC list; the second is.
| Field | Description |
|---|---|
mobile_phones_validation_status | Comma-separated, positionally aligned with mobile_phones: unknown, valid |
mobile_phones_validation_date | Validation date |
Professional Profile
| Field | Type | Description | Example |
|---|---|---|---|
job_title | string | Current job title | product analyst |
job_title_normalized | string | Standardized job title | product analyst |
job_title_history | string | Previous titles | associate analyst |
headline | string | LinkedIn headline | Product Analyst at Acme Corp |
seniority_level | string | Normalized seniority | staff, manager, director, vp, cxo |
seniority_level_2 | string | Secondary seniority | More granular classification |
seniority_level_raw | string | Raw from source | entry, senior, c_suite |
department | string | Primary department | engineering, sales |
department_2 | string | Secondary department | More granular classification |
subdepartments | string | Sub-department | |
job_functions | string | Function categories | |
inferred_years_experience | string | Estimated experience | |
education_history | JSON string | Education records | See example below |
education_history Example
{
"name": "Stanford University",
"url": "https://www.linkedin.com/school/stanford-university",
"extraction_order": 0,
"extraction_date": "2025-05-04T16:41:23Z"
}Social Profiles
| Field | Type | Description |
|---|---|---|
linkedin_url | string | LinkedIn profile URL |
twitter_url | string | Twitter/X profile URL |
github_url | string | GitHub profile URL |
facebook_url | string | Facebook profile URL |
photo_url | string | Profile photo URL |
social_connections | string | Connection range: 1-9, 10-99, 100-249, 250-499, 500+ |
Personal Address
| Field | Type | Example |
|---|---|---|
personal_address | string | 123 Main St |
personal_address_2 | string | Apt 4B |
personal_city | string | new york |
personal_state | string | new york |
personal_state_code | string | ny |
personal_zip | string | 10001 |
personal_zip4 | string | 1234 |
personal_country | string | united states |
personal_country_alpha2 | string | us |
personal_country_alpha3 | string | usa |
personal_country_numeric | number | 840 |
personal_timezone | integer | UTC offset |
address_id | string | Encoded address identifier |
dpv_code | string | USPS Delivery Point Validation: d, n, s, y |
Demographics
| Field | Type | Values |
|---|---|---|
gender | string | f, m, u |
inferred_gender | string | f, m (algorithmically inferred) |
inferred_gender_unisex | string | y if name is unisex, n otherwise |
age_range | string | 18-24, 25-34, 35-44, 45-54, 55-64, 65 and older |
has_children | string | y or n |
is_married | string | y or n |
is_homeowner | string | y or n |
income_range_lc | string | less than $20,000 through $250,000+ (9 ranges, all lowercase) |
net_worth | string | -$20,000 to -$2,500 through $1,000,000 or more (13 ranges) |
is_profile_b2b | string | y or n |
is_profile_b2c | string | y or n |
Company Fields
Firmographic data from the identity graph.
| Field | Type | Description | Example |
|---|---|---|---|
company_name | string | Company name | acme corp |
company_name_history | string | Previous names | |
company_domain | string | Website domain | acmecorp.com |
company_related_domains | string | Associated domains (comma-separated) | acme.co, acme.io |
company_description | string | Company description | |
company_industry | string | Primary industry | computer software |
company_naics | string | NAICS code | 5112 |
company_sic | string | SIC code | 7372 |
company_employee_count | string | Exact employee count | 250 |
company_employee_count_range | string | Employee bracket | 251 to 500 |
company_total_revenue | number | Annual revenue | 15000000 |
company_revenue_range | string | Revenue bracket | 10 million to 25 million |
company_address | string | Street address | 100 main st |
company_address2 | string | Address line 2 | |
company_city | string | City | san francisco |
company_state | string | State | california |
company_zip_code | string | ZIP code | 94105 |
company_country | string | Country | united states |
company_phones | string | Phone numbers | +14155551234 |
company_phones_dnc | string | DNC status | n |
company_linkedin_url | string | LinkedIn URL | linkedin.com/company/acme |
company_id | string | Internal company identifier | |
company_id_right | string | Matched company ID from enrichment join |
Reading Parquet Files
See our Reading Parquet Files guide for language-specific examples.
Quick Start with DuckDB
-- Read all parts of an audience export
SELECT * FROM read_parquet('audience_part-*.parquet');
-- Filter to high-intent contacts
SELECT first_name, last_name, email, company_name, job_title, score, perc_score
FROM read_parquet('audience_part-*.parquet')
WHERE score = 'high'
ORDER BY perc_score DESC;
-- Unique contacts across all topics
SELECT DISTINCT ON (email) email, first_name, last_name, company_name
FROM read_parquet('audience_part-*.parquet');Quick Start with Python
import pandas as pd
df = pd.read_parquet('audience_part-0000.parquet')
# High-intent contacts with company data
leads = df[(df['score'] == 'high') & (df['company_name'].notna())]
leads[['first_name', 'last_name', 'email', 'company_name', 'job_title', 'perc_score']]All Fields (125 total)
Full field list
address_id, age_range, business_emails, category, company_address, company_address2,
company_city, company_country, company_description, company_domain, company_employee_count,
company_employee_count_range, company_id, company_id_right, company_industry,
company_linkedin_url, company_naics, company_name, company_name_history, company_phones,
company_phones_dnc, company_related_domains, company_revenue_range, company_sic,
company_state, company_total_revenue, company_zip_code, current_business_email,
current_business_email_validation_date, current_business_email_validation_status,
department, department_2, department_raw, direct_numbers, direct_numbers_dnc, domain_lc,
dpv_code, education_history, email, email_last_seen, email_validation_status, emails,
emails_md5_lc_hem, emails_md5_uc_hem, emails_sha1_lc_hem, emails_sha1_uc_hem,
emails_sha256_lc_hem, emails_sha256_uc_hem, facebook_url, first_name, first_uuid_norm,
flattened_uuids, gender, github_url, has_children, headline, hem, income_range_lc,
inferred_gender, inferred_gender_unisex, inferred_years_experience, invalid_emails,
is_email_business, is_email_personal, is_homeowner, is_international, is_married,
is_profile_b2b, is_profile_b2c, job_functions, job_title, job_title_history,
job_title_normalized, last_name, last_updated, linkedin_url, md5_lc_hem, md5_uc_hem,
middle_name, mobile_phones, mobile_phones_dnc, mobile_phones_validation_date,
mobile_phones_validation_status, net_worth, perc_score, personal_address,
personal_address_2, personal_city, personal_country, personal_country_alpha2,
personal_country_alpha3, personal_country_numeric, personal_email,
personal_email_validation_status, personal_emails, personal_phones, personal_phones_dnc,
personal_state, personal_state_code, personal_timezone, personal_zip, personal_zip4,
phones, phones_dnc, photo_url, primary_contact_emails, profile_pid_all, score,
segment_type, seniority_level, seniority_level_2, seniority_level_raw, sha1_lc_hem,
sha1_uc_hem, sha256_lc_hem, sha256_uc_hem, social_connections, subcategory,
subdepartments, topic_id, topic_id_prefix, topic_name, ts, twitter_url, valid_emailsData Formatting Notes
- Text fields are lowercase. Names, addresses, industries, and most string values are stored in lowercase. Apply your own casing for display.
- Boolean-like values are strings. Fields like
has_children,is_homeowner, andis_marriedreturn"y"/"n"(nottrue/false).is_email_businessandis_email_personalreturn"true"/"false". - JSON fields are stringified.
education_historyis JSON encoded as a string. Parse it in your application. - Null fields appear as null. If a field has no value for a given row, it will be null in the parquet file. Handle missing values in your code.
- Dates use ISO 8601.
tsis a timestamp. Date-only fields useYYYY-MM-DD.
Related
- Intent Audiences API -- Create, poll, sample, and download intent audiences
- On-Domain Event Fields -- Field reference for pixel event data
- Reading Parquet Files -- Language-specific parquet reading examples
- Building Audience Filters -- Use fields in audience filter rules
- Person-Level Intent -- Understanding person-level intent data
Updated 15 minutes ago